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Abstract

This study examines the pricing of equity cross-sectoral crash (CSC) risk in the cross

section of commodity futures returns. Theoretically, commodity futures with higher expo-

sure to the CSC risk are expected to offer lower subsequent returns as they hedge against

the CSC risk. We first construct a CSC risk measure by averaging the pairwise left-tail

dependence across 17 sectors in the US market, which allows us to better capture granular

sector-level shocks often washed out at the aggregate level. We find that the return spread

between commodity futures with the lowest and highest loading of the CSC risk is 1.04%

per month and significant at the 1% level. This result can be rationalized as shocks to the

CSC risk precede impaired economic activities in the future. Overall, our paper sheds light

on the pricing of commodity futures with a novel stock market crash risk factor.
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1 Introduction

We examine the impact of equity cross-sectoral crash risk on the cross section of US commodity

futures returns under the rare disaster framework. Rare disaster events, such as equity market

crashes, are crucial for understanding asset returns and shown to account for a number of

financial market puzzles, including the equity premium puzzle and volatility puzzle (Barro, 2006;

Farhi & Gabaix, 2016; Gabaix, 2012; Wachter, 2013). In the seminal work of Rietz (1988), the

author argues that high equity premiums are compensations to investors for bearing the risk of

rare disaster events as market crashes result in severe wealth destruction and unfavourable shifts

in consumption opportunities.1 Existing studies have documented a substantial implication of

rare disaster events in determining asset prices (see, for example, Bollerslev & Todorov, 2011;

Fan et al., 2022; Gabaix, 2012; Gao et al., 2019). However, the relationship between extreme

equity market downturns and commodity futures markets has received little attention.

When faced with the prospect of disaster events, investors naturally reallocate their in-

vestment from equity to alternative asset classes (Faias & Zambrano, 2022) and are willing to

hold assets with higher resilience (Gabaix, 2012). Given the inflation hedging role of commodi-

ties, commodity returns are expected to have low or even negative correlation with traditional

asset classes such as the equity and yield diversification benefits (Daskalaki et al., 2017; Erb

& Harvey, 2006; Geman, 2005; Geman & Kharoubi, 2008; Gorton & Rouwenhorst, 2006; Ski-

adopoulos, 2013). However, over the past decades, institutional investors, including commodity

index traders and fund managers, have notably increased their exposure to commodity futures to

exploit historically low correlations between equity and commodities. This leads to a fundamen-

tally changed nature of price fluctuations for commodity futures contracts (Basak & Pavlova,
1 It is important to distinguish the crash risk from downside risk of Roy (1952). Ang, Chen, & Xing (2006)

propose the downside beta as assets’ exposure to aggregate market returns when these returns are below the
average level and document a significant downside risk premium. Similarly, Lettau et al. (2014) develop a
downside risk capital asset pricing model to understand the cross sectional returns of many asset classes. The
crash risk is conceptually different as it emphasizes extreme left-tail events (Chabi-Yo et al., 2018; Kelly & Jiang,
2014; van Oordt & Zhou, 2016).
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2016; Cheng & Xiong, 2014; Henderson et al., 2015), known as the Financialization of com-

modities in the literature (Goldstein & Yang, 2022; Singleton, 2014; Tang & Xiong, 2012). This

important development has put the traditional diversification benefit of commodities in doubt

(Daskalaki & Skiadopoulos, 2011; Hu et al., 2024).

We join this discussion by focusing on the relative safeness of commodity futures and ex-

ploring whether, in the cross section, commodity futures still possess the time-varying hedging

ability. In particular, we construct a dynamic measure for extreme equity market downturns

and test if commodities with lower loadings on the equity crash risk would be discounted more

heavily and offer higher expected returns than those with higher crash risk loadings. Our paper

builds on the intuition that, if the returns of commodity futures contracts rise when the cross-

sectoral crash risk increases, commodity futures can be regarded as an effective hedge against

the equity crash risk, and risk-averse investors are more willing to pay higher prices for holding

these contracts.

Our measure for extreme equity market downturns is in the spirit of Faias & Zambrano

(2022). This study utilizes the information contained in the cross-sectoral left-tail dependence

to predict the equity risk premium (ERP). It finds that incorporating sectoral tail dependence

leads to a greater improvement of the ERP prediction than by adding the variance risk premium

of Bollerslev et al. (2009), a traditional predictive variable characterizing investor risk aversion

(Bakshi & Madan, 2006; Bekaert et al., 2023). The economic rationale is that joint sectoral

downturns strongly indicate an upcoming systematic consumption disaster event.

The empirical success of the sectoral tail dependence measure in capturing time-varying dis-

aster events in the equity market can be attributed to two features. First, the industry-level

information. According to the multi-index model of Moskowwitz & Grinblatt (1999), asset re-

turns are considered to contain an industry-specific component orthogonal to the market- or

firm-level components. The industry effect has been identified by researchers and practition-

ers as a key factor in constructing equity portfolio, and empirically tested in the asset pricing
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framework (Asness et al., 2000, 2014; Bali et al., 2006). Hoberg & Phillips (2018) and Hong

et al. (2007) argue that industry portfolio returns are able to predict stock market movements

because of investors’ limited information processing ability leading to a lead-lag relation between

industry and market portfolios. Cohen & Frazzini (2008) show that industry interdependence

matters for return predictability due to economic links between firms. Hence, the industry-

specific information, especially the negative news pertaining to left-tail events, is instrumental

in describing movements in extreme asset returns. Second, the disaggregated nature. Compared

with aggregated univariate tail variables, such as the fear index of Bollerslev & Todorov (2011)

and extreme value dependence of Poon et al. (2004), non-aggregated sectoral information bet-

ter reflects sector heterogeneity as different pro-cyclical industry shocks are often neglected or

washed out at the aggregate level (Holly & Petrella, 2012; Horvath, 2000; Menzly & Ozbas, 2010;

Veldkamp & Wolfers, 2007). The sectoral-level tail measure also has the advantage of capturing

joint distributions of sector returns at a more granular level. Taken together, the cross-sectoral

tail dependence measure contains rich information and exhibits superior pricing performance in

the existing literature.

In the empirical exercises, we adopt a copula-based semi-parametric left-tail dependence

approach in constructing the cross-sectoral tail measure. Each month, we compute the bivariate

left-tail dependence for a pair of sectors by combining the GARCH(1,1) model with a non-

parametric copula. This approach is able to account for the volatility clustering effect without

imposing a restrictive form on the pairwise sector dependence (Chabi-Yo et al., 2022). We then

take the arithmetic mean of dependence estimates across all sector pairs to obtain the joint cross-

sectoral crash (CSC) risk measure. Our measure draws substantial information from pairwise

sector connections and thus differs conceptually from the existing tail behaviour indicators in

the literature (see Agarwal et al., 2017; Faias & Zambrano, 2022; Harvey & Siddique, 2000; Kelly

& Jiang, 2014; Ruenzi et al., 2020; Weigert, 2016, for example).

Our study makes an important empirical contribution to the literature by showing that the
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equity CSC risk is priced in the cross section of commodity futures returns with a significant

risk premium. Using data for 17 US sectors and 31 commodity futures traded at four North

American exchanges between January 1990 and May 2022, we build long-short portfolios by

sorting commodity futures contracts into quintiles based on their exposure to the CSC risk,

i.e., their CSC betas. We find that the one-month ahead returns of these quintile portfolios

exhibit a decreasing pattern as high CSC beta portfolios underperform low CSC beta portfolios

by 1.04% per month (t-statistic = 3.27), and this predictability is persistent over the next

three months. To investigate whether the hedging role of commodity futures is weakened due

to the financialization of commodities, we perform a subsample analysis focusing on the post-

financialization period and still observe significant predictive performance of the CSC risk in the

subsample.

We obtain consistent results by running the Fama & MacBeth (1973) cross-sectional re-

gressions at the commodity level and simultaneously controlling for a large set of commodity

characteristics. Moreover, we show that the significant return differential cannot be spanned

by existing commodity risk factors or cross-sectional return predictors. For example, we imple-

ment the three-factor commodity asset pricing model of Bakshi et al. (2019) and find that the

monthly return spreads between portfolios with long (short) position in the CSC beta-sorted

bottom (top) quintile are economically large at 0.9% per month and statistically significant at

the 1% level (t-statistic = 3.05). This substantial sectoral crash risk premium indicates that

commodity futures with a greater exposure to the CSC risk earn significantly lower subsequent

returns compared with their counterparts with a smaller exposure. Finally, we perform a range

of robustness checks in terms of the investability and empirical design of the strategy by con-

sidering the turnover adjustment, transaction cost, alternative estimates of CSC betas, and an

alternative construction of the CSC index. Our baseline results remain qualitatively the same.

We construct a CSC beta factor as the long-short return spread by buying low CSC beta com-

modities and shorting high CSC beta commodities. To examine the asset pricing performance of
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the CSC beta factor and its risk premium, we implement the Fama-MacBeth two-stage regres-

sions and generalized method of moments (GMM) estimations. We find that the CSC plays an

important role in explaining commodity futures portfolio returns. The risk premium is highly

significant at the 1% level and close to the average monthly returns of the CSC beta factor.

Compared with well-documented risk factors such as basis, the CSC beta factor bears the most

significant risk premium. Moreover, pricing models augmented with the CSC beta factor exhibit

improved explanatory power. We also show that the pricing ability of our CSC beta factor

remains highly significant when controlling for existing disaster and downside risk factors, such

as the tail index of Kelly & Jiang (2014), global tail risk of Gao et al. (2019), left tail jump risk

of Bollerslev et al. (2015), news-implied rare disaster index of Manela & Moreira (2017), and

downside risk factor of Lettau et al. (2014). These results underscore the incremental informa-

tion in the CSC beta factor and suggest that investors would demand compensation for holding

commodity futures that cannot effectively hedge the CSC risk.

What is the economic interpretation of the significant CSC risk premium? It is natural to

explore whether heightened CSC risk indeed captures bad states of the economy as suggested

in the literature. Exploiting this avenue, we find that empirically the CSC risk is linked to the

aggregate economic prospect. We show that the output (industrial production) and employment

decline significantly following a positive shock to the CSC risk. In other words, increased CSC

risk predicts impaired economic activities, or bad states of the world, in the near future. These

results suggest that the CSC risk matters to the marginal utility of investors and underlies its

ability in impacting equilibrium prices.

Our paper is closely related to Fan et al. (2022), which explores the pricing of equity tail risk

in the cross section of currency returns. We differ from Fan et al. (2022) in that we focus on

commodity futures as an important asset class, especially given its financialization in the past

two decades. Furthermore, our tail risk measure draws upon an extensive literature on the role

of industry-specific information in asset pricing, contrary to Fan et al. (2022) which utilize an
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index option-based measure of equity tail risk.

The rest of this paper is organized as follows. Section 2 reviews the related literature. Section

3 presents theoretical motivation and develops our testable hypothesis. Section 4 describes data

and outlines the construction of CSC risk measure. In Section 5, we discuss empirical results and

robustness checks on the pricing of CSC risk in commodity futures returns. Section 6 provides

a possible economic mechanism of the results. Finally, Section 7 concludes.

2 Related literature

Our research belongs to the literature on asset pricing with the rare disaster framework. Gabaix

(2012) finds that macro-finance puzzles, such as the equity premium puzzle and yield curve slope

puzzle, can be explained by the time-varying rare disaster risk. Bollerslev & Todorov (2011)

argue that the compensation for rare events largely accounts for average equity risk premia in

the US. Gao et al. (2019) show that the beta loading on a global ex ante tail risk concern index

negatively drives variations of cross-sectional returns in multiple asset classes. Fan et al. (2022)

provide a rare disaster risk-based explanation of exchange rate puzzles. In commodity futures

markets, Zhang (2021) uncovers a significant time-series predictability of the news-implied rare

disaster concern for the returns of index commodity futures. Our paper contributes to this

strand of the literature by showing that the exposure of commodity futures to the cross-sectoral

crash risk is an important determinant of cross-sectional return variations.

Meanwhile, our study speaks to the literature on the relation between equity and commodity

markets. Bakshi et al. (2019) show that innovations of equity volatility are the economic funda-

mentals underlying commodity risk factors. Fernandez-Perez et al. (2017) consider commodity

risk factors as sources of intertemporal risk in the equity market, whereas Fernandez-Perez et al.

(2023) study the cross-asset time-series momentum strategy across crude oil and international

stock markets. An extensive literature explores the diversification role of commodities for equity

risk. For example, Gorton & Rouwenhorst (2006) show that commodity futures provide effective
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diversification for equity portfolios and Brooks & Prokopczuk (2013) conclude that commodities

act as a useful diversifier of equity returns and volatility. Additional evidence supporting the

hedging role of commodities includes Bessler & Wolff (2015), Bhardwaj et al. (2016), Daskalaki

et al. (2017), Gagnon et al. (2020), and Rubbaniy et al. (2022). However, Daskalaki & Ski-

adopoulos (2011) and Nguyen et al. (2020) argue that such diversification role is weakened by

the financialization of commodities. Our study adds to this debate by showing that commodity

futures still possess time-varying hedging capability in the cross section.

Our study is also related to the literature on the crash risk in commodity markets, including

Ammann et al. (2023), Bianchi (2018), Enilov et al. (2023), Fernandez-Perez et al. (2018), Lu et

al. (2024), Mehlitz & Auer (2021), Iqbal et al. (2023), and Qiao & Han (2023), among others. For

instance, Fernandez-Perez et al. (2018) highlight the role of skewness in commodity markets;

Ammann et al. (2023) estimate the option-implied commodity tail risk and explore drivers

behind its cross-sectional pricing ability; whereas Enilov et al. (2023) and Qiao & Han (2023)

analyze the tail behaviour patterns and tail risk contagion across commodity markets during the

COVID-19 pandemic, respectively. Our study differs from these as we focus on understanding

the role of sectoral tail risk in the pricing of cross-sectional commodity futures returns.

Finally, our paper contributes to the emerging literature on the cross-sectional pricing of

commodity futures returns by proposing a novel cross-sectoral crash risk factor. Existing studies

have provided a large set of return predictors in commodity futures markets, including basis

(Bakshi et al., 2019; Koijen et al., 2018; Szymanowska et al., 2014; Yang, 2013), momentum

(Asness et al., 2013; Bianchi et al., 2015; Miffre & Rallis, 2007), basis-momentum (Boons &

Prado, 2019), skewness (Fernandez-Perez et al., 2018), open interest (Hong & Yogo, 2012),

and relative basis (Gu et al., 2023), among others. We extend this strand of the literature by

proposing a new commodity risk factor and examining its predictive performance. Our findings

thus have important economic and practical implications for risk management, asset allocation,

and portfolio diversification.
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3 Theoretical motivation

Existing theoretical studies have recognized the link between dynamic disaster risk and asset

prices (Gabaix, 2012; Seo & Wachter, 2018; Wachter, 2013). Similar to Gabaix (2012), we

assume a representative agent with utility E0

[∑∞
t=0 e

−ρt C
1−γ
t −1
1−γ

]
, where Ct is a consumption

endowment, γ is the coefficient of relative risk aversion, and ρ is the rate of time preference. At

time t+1, a disaster occurs with probability pt. The process of the endowment can be described

as follows:

Ct+1

Ct
= egc ×


Bt+1 if a disaster happens at t+ 1,

1 if no disaster happens at t+ 1,

(1)

where gc is the growth rate of the economy in normal times, and Bt+1 > 0 is a random variable.

The pricing kernel is the marginal utility of consumptionMt = e−ρtC−γt and follows the process:

Mt+1

Mt
= e−ρ−γgc ×


B−γt+1 if a disaster happens at t+ 1,

1 if no disaster happens at t+ 1.

(2)

In disaster times, the payoff of asset i is expected to be destroyed. Gabaix (2012) models the

time variation in the asset’s recovery rate by introducing the resilience (Hit) of asset i during

disaster times as follows:

Hit = ptEDt
[
FRCi,t+1B

−γ
t+1 − 1

]
, (3)

where EDt is the expected value conditioning on a disaster happening at time t+1, and FRCi,t+1 > 0

is the asset-specific recovery rate. Intuitively, when an asset is expected to perform well during

disaster times with a high value of FRCi,t+1, the resilience of this asset is high. Investors are more

optimistic (pessimistic) and willing to pay higher (lower) prices for holding assets with higher

(lower) resilience Hit. In the cross section, assets with a higher level of resilience carry lower

risk premiums. This intuition implies a negative relation between resilience and the expected

returns to assets (see Proposition 1 of Gabaix 2012). We examine this theoretical implication in

commodity futures markets and develop our testable prediction: Commodity futures with higher
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(lower) exposures to time-varying disaster risk offer lower (higher) average expected returns.

We follow Faias & Zambrano (2022) to characterize the time-varying rare disaster states.

In a two-sector economy, we consider the bivariate returns (X,Y ) for the two sectors with

corresponding marginal cumulative distribution functions FX and FY . The probability of equity

markets entering a disaster state is identified as the probability of both sectors falling below a

lower bound threshold (s):

PD(s) = Pr
[
X < F−1X (s) | Y < F−1Y (s)

]
. (4)

If PD(s) approaches a limit that is not equal to zero as s approaches zero from the right, X

and Y are asymptotically dependent in the lower tail (Chabi-Yo et al., 2018) with a lower tail

dependence defined as: lims→0+ PD(s).

4 Data and variables

We use 17 sectors in the US equity markets to construct the CSC risk measure at the daily

frequency. We collect these daily data from Kenneth R. French’s data library for the period

from 1989 to 2022. The details and summary statistics of sectors are outlined in Appendix A.

Historical prices for the S&P 500 index and Goldman Sachs Commodity Index are obtained

from the Bloomberg, and the time series of VIX is downloaded from the FRED.

We consider 31 commodity futures contracts traded at four North American exchanges:

CBOT, CME, ICE, and NYMEX. We collect daily settlement prices, trading volume, and open

interest from January 1990 to May 2022 from the Bloomberg. We group the futures contracts

into five categories: energies (crude oil Brent, crude oil WTI, gasoline, gasoline unleaded, gasoline

blendstock, heating oil, and natural gas), metals (copper, gold, palladium, platinum, and silver),

softs (butter, cocoa, coffee, milk, orange juice, lumber, and sugar), grains (corn, cotton, Kansas

wheat, oats, rough rice, soybean meal, soybean oil, soybean, and wheat), and livestock (feeder

cattle, lean hogs, and live cattle). Our data coverage is comparable to those used in Bakshi et

9



al. (2019) and Gu et al. (2023). For trader’s long and short positions data, we collect weekly

Commitment of Trade (COT) reports from the US Commodity Futures Trading Commission.

Since futures contracts have pre-determined expiration dates and are thinly traded when

they are close to expiration, we follow the convention to hold the front-end contracts until one

month before maturity and then roll over to the second-nearest contracts, similar to Boons &

Prado (2019), Fernandez-Perez et al. (2018), and Han & Kong (2022). We calculate the return

of commodity k on day d as Rk,d =
Fk,d−Fk,d−1

Fk,d−1
, where Fk,d is the futures price of commodity k

on day d for the front-end contract and Fk,d−1 is the price of the same contract on day d − 1.

We then compound the daily return series to obtain monthly returns.

Table 1 reports the summary statistics of all commodity futures. Consistent with Bakshi et

al. (2019) and Sakkas & Tessaromatis (2020), investment in individual commodities is unattrac-

tive as their annualized mean returns are all below 10% and 13 out of 31 commodities yield

negative average returns. Moreover, 21 out of 31 commodities have the first-order autocorrela-

tion coefficients below 0.1, indicating that the daily return series of most commodity futures are

serially uncorrelated.

4.1 Cross-sectoral crash risk

Without imposing a restrictive functional form on the dependence structure between sectors,

we follow Chabi-Yo et al. (2022) and implement a semi-parametric method for estimating the

bivariate left-tail dependence (BLTD) between a pair of sectors. It is defined as follows:

BLTDi,j := P[Tp[Ri] | Tp[Rj ]] = P[Ri ≤ Qp[Ri] | Rj ≤ Qp[Rj ]], (5)

where Ri and Rj represent returns of sectors i and j, respectively. We define crash events as

extreme realizations of Ri by Tp[Ri] := {Y ≤ Qp[Ri]} with Qp[Ri] := sup{P[Ri ≤ ri] ≤ p},

indicating the upper p-quantile of Ri. Likewise, Rj ≤ Qp[Rj ] stands for the crash events in

sector j. Hence, P[Tp[Ri] | Tp[Rj ]] denotes the conditional probability that sector i realizes
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crash events given that another sector j also takes on an extreme realization at or below its

p-quantile. The value of BLTDi,j tends to be high (low) if sector i is more (less) likely to exhibit

extreme realizations simultaneously with sector j, suggesting higher (lower) left-tail dependence

of a given joint distribution.

To compute BLTD for each pair of sectors in month t, we use a rolling window of the

most recent 250 trading days to ensure sufficient observations and stable estimates (Ang &

Chen, 2002). We combine a parametric GARCH(1,1) model to describe marginal sector return

distributions and a non-parametric approach for modelling the left-tail dependence. Specifically,

let rdi,s and r
d
j,s denote, respectively, the daily returns of sectors i and j over the recent 250-day

estimation period (s = 1, . . . , 250). We collect these two return series into a vector (Rs)s=1,...,250

and fit two marginal distributions to the GARCH(1,1) model of the form:

Rf,s = µf + σf,sΦf,s, f = i or j (6)

σ2f,s = ωf,0 + ωf,1(σf,s−1Φf,s−1)
2 + ωf,2σ

2
f,s−1, (7)

where Φf,s stands for independent and identically distributed residuals, and µf , ωf,0, ωf,1, ωf,2 ∈

R. To apply the maximum likelihood estimation method for this model, we further restrict that

ωf,0, ωf,1, ωf,2 > 0 and ωf,1 + ωf,2 < 1. Following Christoffersen et al. (2012), we assume that

the distribution of innovations follows the skewed−t distribution of Hansen (1994). Thus, the

conditional distribution of Φf,s can be represented by parametric functions of Fs−1-measurable

parameters, where Fs−1 represents the information set available at time s − 1 (Fan & Patton,

2014). Based on this distributional assumption, the transformation of Φf,s is completed by the

probability integral transforms:

ûf,s = Ff,s(Φf,s), ûf,s ∼ Uniform[0, 1], (8)

where ûf,s denotes the white-noise series and Ff,s is the conditional cumulative distribution

functions (CDFs) of Φf,s. With transformed marginal return series ûf,s, we re-write Eq.(5) as
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follows:

BLTDi,j,t =

∑
s∈D 1({ûi,s ≤ qi}) · 1({ûj,s ≤ qj})∑

s∈D 1({ûj,s ≤ qj})
, (9)

where qf is the upper p-quantile of (ûf,s)s∈D, f = i or j, and D is the number of returns for

all series. In particular, the denominator of Eq.(9) is the sum of days in which a left-tail event

occurs for sector j over the rolling window estimation period, whereas the numerator is the

total number of days on which sectors i and j simultaneously realize a left-tail event during the

same period. Hence, a higher BLTD value indicates a stronger left-tail comovement between

sectors i and j, and vice versa. As we set p = 5% in Eq.(9), the BLTD measures the conditional

probability of an extreme return realization which is at or below the corresponding 5%-quantile

of sector i’s return distribution given that sector j realizes a return at or below its 5%-quantile.

To construct the joint cross-sectoral crash risk index, we follow Faias & Zambrano (2022)

and use the cross-sectional arithmetic mean of the BLTD estimates as follows:

CSCt =

 N

2


−1∑

i<j

BLTDi,j,t, (10)

where N is the total number of pairwise combinations.

Figure 1 shows the dynamics of the cross-sectoral crash risk index, which is stationary without

a clear trend but able to capture major economic events during the sample period. At the

beginning of the sample, high values of the crash risk index could be attributed to the long-

lasting impact of the 1987 stock market crash and the Gulf War in 1991. Since then, the index

exhibits spikes between 1997 and 1998, which is probably associated with the Asian financial

crisis and the Russian government debt default, respectively. During the Great Recession of

2007-09, we observe a notable spike that captures heightened left-tail dependence during market

downturns. Another pronounced spike is observed in 2010, which corresponds to the onset of the

European debt crisis. A final spike in 2020 is around the episode of the COVID-19 pandemic.

12



4.2 Commodity factor portfolios

We construct ten commodity factor portfolios as sorting variables, including the basis (Bakshi

et al., 2019; Szymanowska et al., 2014; Yang, 2013), momentum (Bakshi et al., 2019; Miffre &

Rallis, 2007), basis-momentum (Boons & Prado, 2019), relative basis (Gu et al., 2023), hedging

pressure (Kang et al., 2020), liquidity (Szymanowska et al., 2014), volatility (Dhume, 2010;

Szymanowska et al., 2014), skewness (Fernandez-Perez et al., 2018), value (Asness et al., 2013),

and open interest (Hong & Yogo, 2012; Szymanowska et al., 2014). Each month, we sort all

commodities into five quintile portfolios based on these variables, and take long (short) positions

in extreme quintile portfolios predicted to appreciate (depreciate) in the following month. All

portfolios are equally-weighted and re-balanced monthly with updated signals. We also construct

the average commodity factor (AVG) as the long-only equally-weighted cross-sectional average of

all available commodity contracts’ returns following Bakshi et al. (2019). Detailed descriptions

for constructing these variables are provided in Appendix B.

5 Empirical analysis

To evaluate whether the US CSC risk is priced in the cross section of commodity futures returns,

we sort futures contracts into quintile portfolios based on their lagged exposure to the CSC risk.

To do so, we run the following regression with a rolling window of 60 months:

Rk,t = αi + βCSC,k∆CSCt + βMKT,kMKTt + βCMKT,kCMKTt + βVIX,k∆VIXt + εk,t, (11)

where Rk,t denotes excess returns of commodity futures k and ∆CSCt is the change in the joint

CSC risk, both in month t. In this regression, MKTt denotes the US stock market returns

in month t and captures changes in demand caused by changes in expectations about the US

economic growth, and CMKTt is the commodity market index in month t proxied by the GSCI

commodity index, which accounts for changes in the investment set pursued by commodity
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futures investors. Motivated by Fan et al. (2022) and Henderson et al. (2015), we control for the

contemporaneous relation between commodity futures prices and innovations to the VIX found

in Cheng et al. (2015) by including the contemporaneous log change in the VIX (∆VIXt). The

CSC betas (βCSC) from this regression are used for the portfolio analysis below.

5.1 Univariate portfolio sorts

At the end of month t, we sort all commodity futures into equally-weighted quintile portfolios

based on the pre-ranking CSC beta (βCSC) to calculate one-month and one-quarter ahead port-

folio returns. The return spreads, low-minus-high (L-H), are obtained by taking long and short

positions in portfolios with the lowest and highest βCSC, respectively.

Table 2 Panel A provides summary statistics of one-month ahead portfolio returns. We find

that portfolios with the lowest CSC beta yield significantly higher returns than those with the

highest CSC beta. For example, the returns of portfolio 1 (P1, low CSC beta) and portfolio 5 (P5,

high CSC beta) are 0.53% and -0.51% per month, respectively. Intuitively, commodity futures

that effectively hedge the CSC risk, i.e., those with high CSC beta, deliver significantly lower

returns than their counterparts as investors are willing to pay higher prices for these commodity

futures. Hence, the long-short strategy of buying P1 and selling P5 generates an average return

spread of 1.04% on a monthly basis with a t-statistic of 3.27 and an annualized Sharpe ratio of

0.60. More importantly, the significant return differential is attributable to both long and short

legs as the average returns of P1 and P5 are comparable in magnitude. In Panel B, we report

CSC beta-sorted portfolio returns over the next quarter. The returns of P1 and P5 are 1.23%

and -1.34% during the subsequent quarter, respectively, and the long-short strategy delivers a

significant average return of 2.57% per quarter (t-statistic= 2.64) and an annualized Sharpe

ratio of 0.85. Thus the negative relation between CSC beta and future commodity returns is

not a one-month affair.

The dynamics of the beta estimates for all five portfolios are displayed in Figure 2. We
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observe a significant cross-sectional variation in βCSC. It is interesting to note that P1 and P5

consistently have negative and positive CSC betas, respectively, over time and exhibit clearly

distinct characteristics in terms of hedging the cross-sectoral crash risk. Figure 3 Panel A shows

the cumulative returns of CSC beta-sorted quintile portfolios. We can see that P1 consistently

outperforms P5 and the dispersion increases over the sample period. Thus the negative cross-

sectional relation between CSC beta and commodity futures returns persists over time. Panel B

compares the CSC factor, which is constructed by taking long (short) positions in commodities

with the lowest (highest) CSC beta, with the AVG factor. We find that investing in the CSC

factor is more attractive, as it yields a cumulative return about 3.5 times higher than investing

in the AVG factor.

A rapidly growing strand of literature highlights the financialization of commodities and doc-

uments a tightening correlation between equity and commodity markets (see Basak & Pavlova,

2016; Da et al., 2024; Delatte & Lopez, 2013; Singleton, 2014; Tang & Xiong, 2012, for instance).

This is relevant for our study as the financialization could weaken the hedging ability of com-

modity futures. Hence, we conduct a subsample analysis using January 2004 as the starting

time for the financialization of commodities (Tang & Xiong, 2012) and summarize the results

in Table 2 Panel C. We find that average portfolio returns over the next month still show a

decreasing trend from P1 to P5, and the long-short trading strategy generates an average return

of 1.02% per month with a t-statistic of 2.42 and an annualized Sharpe ratio of 0.55. These

results are comparable in magnitude to those in Panel A although the economic significance

somewhat reduces. They confirm that the hedging role of commodity futures remains after the

financialization of commodities.

Another potential concern is that the returns of extreme quintile portfolios could be driven

by a small number of commodities, which are persistently allocated to P1 and P5. To address

this issue, we plot the average frequency of each commodity being assigned to P1 and P5 in

the formation month in Figure 4. We find that, although individual commodities have different
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chances of being allocated to the extreme portfolios, the frequencies of being in P1 or P5 are

below 50% except in two cases. Hence, their ability to hedge the cross-sectoral crash risk varies

over time, and the predictive relation we explore in this study is not constrained to any specific

commodity futures contracts.

In summary, our first set of empirical results shows a significant and strong negative relation

between commodity futures’ CSC risk exposure and their future returns. Such predictability

persists over a longer post-formation horizon, remains after the financialization of commodities,

and is not driven by specific futures products.

5.2 CSC exposure and commodity futures characteristics

To better understand the composition of CSC beta-sorted portfolios, we summarize average

commodity characteristics based on the Fama & MacBeth (1973) cross-sectional regressions.

In particular, we run the following nested econometric specification with a set of commodity

characteristics, one at a time:

βCSCk,t = ϕ0,t + ϕ1,tΩk,t + εk,t, (12)

where βCSCk,t is the CSC beta of commodity k in month t, and Ωk,t is a vector of commodity-

specific control variables, including basis, momentum, basis-momentum, relative basis, hedging

pressure, liquidity, volatility, skewness, value, and open interest. We summarize the time-series

average of the slope coefficients of the CSC beta on these commodity characteristics in Table 3.

We note that Model (2) reports a negative and significant slope coefficient for momentum,

suggesting that commodities with high CSC beta, which generate low excess returns, have low

momentum. This is consistent with the evidence in Bakshi et al. (2019) and Asness et al.

(2013) that commodities with low momentum characteristics generate lower expected returns.

Moreover, the average slope coefficient for liquidity is positive and significant at the 10% level,

indicating that commodities with low CSC beta, which generate high excess returns, have low
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liquidity, i.e., they tend to be illiquid, which are in line with the illiquidity premium of Amihud

(2002). Overall, the CSC beta is hardly correlated with well-known commodity-level control

variables except for momentum and liquidity, and we obtain expected signs for the slope coeffi-

cients for these two variables.

5.3 Fama-MacBeth regressions

We next conduct the Fama & MacBeth (1973) regressions to examine the predictive power of

CSC beta on future commodity returns by simultaneously controlling for a set of well-known

commodity variables. In particular, we run the cross-sectional regression of commodity futures

returns in month t+ 1 on their CSC beta and control variables in month t as follows:

Rk,t+1 = λ0,t + λ1,tβCSC,k,t + λ2,tΩk,t + εk,t+1, (13)

where Rk,t+1 is the futures returns for commodity k in month t+1, and βCSC,k,t is the CSC beta

estimated via Eq.(11) in month t. In the most general specification, we include ten commodity

asset pricing characteristics defined in Section 4.2 as control variables. We compute the Newey

& West (1986) adjusted t-statistics for the time-series average of the cross-sectional regression

coefficient estimates to address the concern for potential autocorrelation.

Table 4 Model (1) shows the coefficient estimate from the univariate regression in which

the commodity futures returns are regressed on the CSC beta. We observe that the coefficient

is negative and highly significant at the 1% level (t-statistic = −3.05). Consistent with our

univariate portfolio analysis in Section 5.1, this indicates a strong negative relation between the

commodity CSC beta and future returns, i.e., the CSC beta significantly and negatively predicts

commodity futures returns. From Models (2) to (11), we augment the univariate regression by

adding one additional control variable at a time. We find that after controlling for all commodity

characteristics, the negative relation still holds: the coefficient estimates for βCSC are all negative

and statistically significant with t-statistics ranging from −2.14 to −2.98. For instance, in Model
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(11), the most comprehensive specification, the coefficient estimate for βCSC is negative at −0.74

and significant at the 5% level. Hence, the return predictability of the CSC beta is economically

important and statistically significant with or without control variables.

5.4 Spanning tests

Now we examine whether the returns to the CSC beta factor, computed as the return difference

between P1 and P5 for the cross section of commodity futures returns, can be spanned by existing

commodity factors such as those summarized in Section 4.2. Table 5 reports summary statistics

(Panel A) and correlation matrix (Panel B) for these 11 variables and our CSC beta factor.

In Panel A, we note that seven factors: basis, momentum, basis-momentum, relative basis,

hedging pressure, liquidity, and skewness, individually generate significant returns. Meanwhile,

the correlations between the CSC beta factor returns and these variables are low, indicating

that the CSC beta factor is unlikely to be spanned by these commodity factors.

We perform the time series spanning tests by regressing the CSC beta factor returns on

the contemporaneous returns to these 11 commodity variables and summarize the results in

Panel A of Table 6. Model (1) is the two-factor model of Yang (2013) featuring the average

and basis factors. Model (2) represents the two-factor model of Boons & Prado (2019) in which

they replace the basis factor with the basis-momentum factor. Model (3) corresponds to the

three-factor model of Bakshi et al. (2019) that considers the average, basis, and momentum

factors. Results for these three specifications indicate that excess returns to the CSC beta

factor are economically important at around 1% on a monthly basis and highly significant. In

specifications (4) and (5), after controlling for the hedging pressure and relative basis factors

separately, the CSC beta factor returns remain economically large at 0.9% and 0.8% per month,

respectively, and statistically significant with a t-statistic of 3.04 and 2.72, respectively. In the

final specification (6), we simultaneously include all 11 commodity risk factors. It is interesting

to observe that the risk-adjusted returns of the CSC beta factor are still significant at the 5%
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level and economically important with a comparable magnitude. Moreover, the factor model

only explains a small proportion of the total variation in CSC beta factor returns as indicated by

the low adjusted R2 at 4.1%. Overall, results in Table 6 Panel A indicate that the profitability

of the CSC beta factor cannot be fully spanned by existing commodity risk factors.

In Panel B, we also regress the CSC beta factor on a set of equity risk factors, including mar-

ket (MKT-Rf), size (SMB), value (HML), profitability (RMW), and investment (CMA) factors

of Fama & French (2015), momentum factor (JT) of Jegadeesh & Titman (1993), investment-

to-assets (IA) and return on equity (ROE) factors of Hou et al. (2015), expected growth factor

(EG) of Hou et al. (2021), betting against beta factor (BAB) of Frazzini & Pedersen (2014),

intermediary capital risk factor (HKM) of He et al. (2017), and liquidity (PS) factor of Pástor

& Stambaugh (2003).2 We find that all slope coefficients for the intercept term are positive

and significant at the 1% level thus none of common equity risk factors can span our CSC beta

factor.

5.5 Asset pricing tests with the CSC beta factor

In this section, we examine the cross-sectional asset pricing performance of the CSC beta factor

via Fama & MacBeth (1973) two-stage regressions. In the first stage, we estimate the monthly

time-series regressions to obtain each commodity futures portfolio’s exposure to risk factors as

follows:

rp,t = β0,t + βCSC-β,tCSC-βt + βF,tF t + ηp,t, (14)

where rp,t is the excess returns of commodity portfolio p, CSC-β is the cross-sectoral crash

beta risk factor, and F t is a set of existing commodity risk factors, including basis, momentum,

basis-momentum, relative basis, skewness, and average factors. In the second stage, we run
2 Fama-French five factors and JT data are from Kenneth R. French’s data library:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. IA, ROE, and EG se-
ries are obtained from: http://global-q.org/index.html. PS data is obtained from Lubos Pas-
tor’s website: https://faculty.chicagobooth.edu/lubos-pastor/data. BAB series is collected from:
https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Monthly. HKM series is obtained
from Zhiguo He’s website: https://voices.uchicago.edu/zhiguohe/data-and-empirical-patterns/intermediary-
capital-ratio-and-risk-factor/.
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cross-sectional regressions with coefficient estimates for risk factors as follows:

r̄p = γ0 + λCSC-ββ̂CSC-β,p + λF β̂F,p + εp, (15)

where r̄p is the sample average of excess returns of portfolio p, λCSC-β and λF are risk premium

for the CSC beta and other factors, respectively, β̂CSC-β,p and β̂F,p are portfolio beta loadings

estimated from the first stage, γ0 is the intercept, i.e., the excess zero-beta rate, and εp is the

pricing error of portfolio p.3 To compare model efficiency, we compute the cross-sectional R2 as

follows:

R2 = 1−
1
N

∑N
p=1 ε̂

2
p

Var
(
R̄p
) . (16)

We also calculate the root mean squared error (RMSE) for each model as follows:

RMSE =

√√√√ 1

T

T∑
t=1

(
r̄p,t − ˆ̄rp,t

)2
, (17)

where ˆ̄rp = γ̂0 + λ̂CSC-ββ̂CSC-β,p + λ̂F β̂F,p is the model implied average excess portfolio returns.

We consider 35 portfolios constructed by sorting commodity futures on characteristics as test

assets, including five basis, five momentum, five basis-momentum, five CSC beta, five relative

basis, five hedging pressure, and five skewness portfolios.

Table 7 reports the second-stage regression results, including estimated risk premium and

standard errors calculated based on both the Newey & West (1986) approach (in parentheses)

and Shanken (1992) correction (in square brackets). We can see that, across different models,

the estimated risk premium for the CSC beta factor (λCSC-β) is positive, ranging from 0.011

to 0.013 per month, and highly significant at the 1% level. These estimates are close to the

monthly average return of the CSC beta factor at 0.010 as shown in Table 2, thus, the estimated

price of risk is approximately equal to the full sample average monthly returns.

Specifically, Models (1) and (2) are single-factor models with either the CSC beta factor or

the basis momentum factor. Between them, Model (1) improves the R2 from 0.13 to 0.29 and
3 We also estimate Eq.(15) without the intercept term, i.e., assuming no common mispricing in the cross

section of returns, and obtain qualitatively the same results.
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reduces the RMSE from 0.15 to 0.12, indicating improved goodness of fit. Model (4) is the two-

factor model of Boons & Prado (2019) with the average market and basis-momentum factors.

When comparing the performance of Models (3) and (4), we find that replacing the BMom factor

with our CSC beta factor in Model (3) leads to a rise in explanatory power from 0.12 to 0.27

and the average factor becomes insignificant, indicating that the CSC beta factor subsumes the

average factor and exhibits greater pricing ability. When we form a two-factor model with the

CSC beta and basis momentum in Model (5), the explanatory power increases substantially to

0.45 and the RMSE drops to 0.09. More importantly, this two-factor model also outperforms

the three-factor model of Bakshi et al. (2019) in Model (7). The final kitchen sink model of (14)

with all factors accounts for 0.62 of the cross-sectional variations in commodity futures portfolio

returns and the pricing error decreases to 0.05. Overall, these results highlight the pricing ability

of the CSC beta factor in explaining the cross section of commodity futures returns and show

that this novel factor significantly outperforms some well-documented commodity risk factors.

In addition to the Fama-MacBeth two-stage regressions, we also implement the GMM es-

timation of Hansen (1982) to estimate the stochastic discount factor (SDF) with pricing er-

rors as an identify weight matrix.4 In Table 8, we report GMM-based heteroskedasticity and

autocorrelation-consistent (HAC) standard errors (Burnside, 2011) for factor loading b and risk

premium λ, as well as the Hansen-Jagannathan (HJ) distance Hansen & Jagannathan (1997),

which calculates the normalized maximum pricing errors and associated p-values for the null

H0 : HJ distance = 0. We use the same set of test assets and pricing factors as in Table 7.

Consistent with Fama-MacBeth regression results, both bCSC-β and λCSC-β are positive and

highly significant across all models, offering additional evidence that the CSC beta factor con-

tains incremental information relative to existing commodity risk factors. For models with the

CSC beta factor, the HJ distances are either insignificant or marginally significant at the 10%
4 The SDF is mt+1 = 1 − b′(ft+1 − µ). Here b is the vector of factor loadings and µ is the mean of pricing

factors (ft+1). Combining the linear SDF with the Euler equation (Et [mt+1rp,t+1] = 0), we obtain a beta pricing
model in which the excess returns of portfolio p equal to the quantity of risk (βp) times the price of risk associated
with factors (λt), i.e., Et [rp,t+1] = βp,tλt. Here λt = Σfb in which Σf is the covariance matrix of the factors.
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level, indicating that the null hypothesis of zero HJ distance cannot be rejected at the 5% level.

Moreover, the explanatory power of models with the CSC beta factor is higher than that of

their competing models. For example, the two-factor Model (5) with the CSC beta and basis

momentum factors has a cross-sectional R2 of 0.48, higher than that of the three-factor model

of Bakshi et al. (2019) in Model (7) at 0.31. Hence, we obtain consistent evidence based on the

GMM that the CSC beta factor contains unique information which helps price the cross section

of commodity futures portfolios.

5.6 Alternative disaster and downside risk factors

We further investigate the pricing ability of the CSC beta factor in comparison with popular

disaster and downside risk factors in the literature. The first variable is the change in tail risk

index (TR) in equity markets of Kelly & Jiang (2014), which is shown to exhibit significant

predictive power for stock returns and negatively predicts economic outcomes. Second, we

consider three option-based disaster risk measures, i.e., the change in ex ante global tail risk

concern (GRIX) of Gao et al. (2019) based on out-of-the-money options written on multiple

global assets, left jump variation (LJV) of Bollerslev et al. (2015) as a proxy for market fears,

and change in the VIX. The LJV is estimated from option prices and captures the left jump tail

risk, which is an important source of the market variance risk. Third, we use the change in the

news-implied rare disaster index (NVIX) of Manela & Moreira (2017) to capture time-varying

rare disaster risk. Finally, as the CSC crash risk originates from the equity market, we consider

four equity factors, including the downside risk factor of Lettau et al. (2014), equity return

volatility (RVol) of Ang, Hodrick, et al. (2006), equity return skewness (RSkew) of Bali et al.

(2016), and coskewness (CoSkew) of Harvey & Siddique (2000).5 In all cross-sectional tests, we

control for the three-factor model of Bakshi et al. (2019).

We perform the Fama & MacBeth (1973) regressions with these nine risk factors as control
5 Data for TR, GRIX, and NVIX are obtained from Chen et al. (2023). The LJV is collected from Lai Xu’s

website https://sites.google.com/site/laixuduke/home. The RVol, RSkew, and CoSkew are constructed by Jensen
et al. (2023) and obtained from https://jkpfactors.com/.
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variables one at a time and summarize the results in Table 9. Consistent with our previous find-

ings, the estimated risk premiums for the CSC beta factor continue to be positive and significant

at the 5% level across different specifications with alternative control variables. This provides

additional supporting evidence that the CSC beta factor contains incremental explanatory power

for commodity futures returns beyond existing disaster and downside risk factors.

5.7 Robustness checks

Turnover and transaction costs

Our first robustness check examines the impact of transaction cost on the performance of

the long-short CSC beta strategy. We calculate the turnover rate (TO) of the long-short CSC

beta portfolio as the time-series average of all re-balanced trades incurred as follows:

TO =
1

T − 1

T−1∑
t=1

Nk∑
k=1

(|wk,t+1 − wk,t∗ |) , (18)

where wk,t is the portfolio weight allocated to commodity k in month t, wk,t∗ = wk,t×(1+rk,t+1)

is the portfolio weight assigned to the same commodity for month t+ 1, and rk,t+1 is the return

of commodity k from month t to t+1. The TO takes into account the performance of commodity

k over the holding period and ranges between 0 (i.e., no re-balancing) and 2 (i.e., all positions

are re-balanced). And the net return of the strategy is expressed as follows:

R̃P,t+1 =

Nk∑
k=1

w̃k,tRk,t+1 − TC
Nk∑
k=1

|w̃k,t − w̃k,t−1∗ | , (19)

where R̃P,t+1 is the return of the long-short CSC beta strategy in month t + 1, and Rk,t+1

denotes returns to commodity k with its estimated weight in portfolio w̃k,t in month t. We set

the proportional transaction cost (TC) to 8.6 basis points (bps) as estimated by Marshall et al.

(2012). We also calculate the break-even proportional transaction cost (in bps) which leads to

zero net return.

Table 10 Panel A summarizes the results. We find that the average monthly turnover of
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the long-short CSC beta portfolio is 0.30. After subtracting the proportional transaction cost

from gross returns, the net return of this strategy remains highly significant at the 1% level

(t-statistic = 3.06). Moreover, the implied proportional transaction cost that makes the long-

short CSC beta portfolio unprofitable is strikingly high at 508 bps on average. These results

indicate that the CSC beta strategy delivers considerable returns and a high Sharpe ratio even

after controlling for the transaction costs.

Alternative estimates of CSC beta

We examine the predictive performance of CSC beta according to a more comprehensive

pricing model. We revise Eq.(11) by adding several commodity risk factors as follows:

Rk,t = αi + βCSC,k∆CSCt + βMKT,kMKTt + βVIX,k∆VIXt

+ βAVG,kAVGt + βBasis,kBasist + βMOM,kMOMt + βBMom,kBMomt + εk,t.

(20)

In this way we control for the three risk factors of the Bakshi et al. (2019) model and basis-

momentum factor in Boons & Prado (2019). We re-construct commodity quintile portfolios

following the same procedure as in the baseline analysis to obtain alternative estimates of CSC

betas. Table 10 Panel B summarizes the results. Consistent with the baseline results, commodi-

ties with the lowest CSC betas deliver significantly higher returns than their counterparts with

the highest CSC betas. The long-short portfolios generate returns that are economically large

at 1.10% per month and statistically significant with t-stat= 2.86, indicating that our baseline

findings are robust to this alternative construction of CSC betas. Furthermore, when we employ

a longer estimation window of 90 months to estimate CSC betas, we find that results shown

in Panel C continue to exhibit a significant negative relation between CSC betas and expected

commodity futures returns. In summary, these alternative changes in constructing the CSC

beta do not impact the important role that CSC risk plays in the cross-sectional predictability

of commodity futures returns.

Alternative CSC index
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In our final robustness test, we consider an alternative measure of the CSC index. In particu-

lar, we use 30 US equity sectors to estimate the cross-sectoral crash dependence.6 In unreported

results, we find that the correlation between these two CSC indices is 0.98. We re-estimate

Eq.(11) based on this alternative index and perform the univariate portfolio analysis. Table 10

Panel D shows that the baseline results are robust with respect to this alternative CSC index.

6 Dissecting the CSC risk premium

According to the intertemporal CAPM of Merton (1973), the CSC risk premium may arise

because shocks to the CSC risk impact future investment and consumption opportunities. So

we investigate the impact of CSC risk on aggregate economic outcomes. Following Bloom (2009)

and Kelly & Jiang (2014), we estimate a vector autoregression (VAR) of the following form:

Yt = A0 +

P∑
p=1

ApYt−p + Bet, Bet ∼ (0,Ω), (21)

where Yt is a 7× 1 vector of variables in month t:

Yt =



CSCt

Federal funds ratet

log(Average hourly earningst)

log(Consumer price indext)

Hourst

log(Employmentt)

log(Industrial productiont)



. (22)

In this system, in addition to CSCt, we include the Federal funds rate, log average hourly earn-

ings, log consumer price index, average hours, log employment, and log industrial production.7

6 They are food, beer & liquor, tobacco, recreation, printing, consumer goods, apparel, health-
care, chemicals, textiles, construction, steel, fabricated products, electrical equipment, automobiles, carry,
mines, coal, oil, utilities, communication, services, business equipment, paper, transportation, wholesale,
retail, meals, finance, and others. These data are obtained from Kenneth R. French’s data library:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

7 All these macroeconomic data are obtained from the FRED: https://fred.stlouisfed.org/.
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Moreover, A0 is a 7 × 1 vector of constants, Ap is a 7 × 7 matrix of parameters for lag length

p, Bet is a vector of reduced form innovations assumed to follow a normal distribution with the

covariance matrix Ω = BB′; and et denotes a vector of uncorrelated structural shocks with zero

mean and unit variance. The Schwartz’s Bayesian information criterion suggests a lag length of

p = 2 for this VAR.

Figure 5 displays the dynamic responses of macroeconomic aggregates to CSC shocks. Panel

(a) shows that the employment exhibits a significant and long-lasting decline as a response to a

CSC risk shock, and Panel (b) depicts the impulse response of the industrial production. It is

clear that a shock to CSC risk gives rise to a negative impact on the industrial production, as it

does on employment. These results highlight that an increase in CSC risk precedes significant

and prolonged contraction in aggregate economic activities. Hence, an increase in the CSC

risk is associated with the deterioration of future investment and consumption opportunities

and influences the marginal utility of investors, thus its ability to determine equilibrium asset

prices.8

7 Conclusion

This study explores the asset pricing implication of the US cross-sectoral crash risk in commodity

futures markets. To better describe the rare disaster risk in the equity market, we extract more

granular sector-level information via a semi-parametric left-tail dependence modelling frame-

work. Our results indicate that the US cross-sectoral crash risk matters in pricing commodity

futures returns and bears a significant risk premium: commodities with greater exposure to the

CSC risk underperform their counterparts with less exposure by 1.04% on a monthly basis indi-

cating that commodity futures that hedge the crash risk offer lower subsequent risk premium.
8 Heightened rare disaster risk also implies a high equity risk premium, i.e., a positive relation between cross-

sectoral crash risk and expected stock market returns. We take this to the data and test the in- and out-of-sample
predictive ability of the CSC risk for stock market returns. We find that the CSC risk is significantly positively
related to future stock returns over multiple horizons and has out-of-sample predictability. This evidence suggests
that the CSC risk serves as an effective measure of time-varying rare disaster risk and is positively related to
market discount rates. See Appendix C for detailed descriptions of empirical methodology and results.
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Such cross-sectional predictability is persistent for the next quarter and robust with respect to

a wide range of control variables in both commodity futures and equity markets. Moreover,

cross-sectional asset pricing tests show that the CSC beta factor bears a highly significant and

positive risk premium and plays an important role in pricing the cross section of commodity

futures returns.

To understand the significant CSC risk premium, we explore the potential economic channel.

By estimating the monthly VAR, we investigate the dynamic relation between shocks to the CSC

risk and aggregate economic activities. The impulse response analysis shows that output and

employment are sensitive to the CSC risk such that a positive shock to the CSC risk precedes

impaired economic conditions. These results give rise to the strong asset pricing implications of

the cross-sectoral crash risk in commodity futures markets. Our study sheds new light on the

relation between commodity futures and equity markets and dissects the role of equity crash

risk in explaining expected returns to commodity futures in the rare disaster framework.
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Figure 1: Time series of cross-sectoral crash risk

This figure displays the time series of joint cross-sectoral crash risk (CSC) based on the average of pairwise
left-tail dependence for 17 sectors in the US market. The sample period is from January 1990 to May 2022.
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Figure 2: Time series of cross-sectoral crash risk betas for commodity futures port-
folios

This figure shows the time series of the beta estimates of CSC beta-sorted commodity futures portfolios. P1 (P5)
includes commodity futures with the lowest (highest) CSC beta. The sample period is from December 1994 to
May 2022.
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Figure 3: Cumulative returns of CSC beta-sorted portfolios and the CSC beta factor
returns

Panel A shows the time series of cumulative returns of CSC beta-sorted commodity futures portfolios. P1 (P5) is
the portfolio with the lowest (highest) CSC beta estimates. Panel B displays the dynamics of cumulative returns
of the CSC beta factor constructed as the difference between returns for extreme CSC betas portfolios (P1-P5)
in red. For comparison, we also plot cumulative returns of the market portfolio defined as the cross-sectional
average of all available commodities in blue. The sample period is from January 1995 to May 2022.
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Figure 4: Frequency of commodity futures in extreme CSC beta-sorted portfolios

This figure shows the proportion (%) of months that each commodity futures is allocated to extreme quintile
portfolios. P1 and P5 are portfolios with the lowest and highest CSC beta-sorted commodity futures contracts.
The sample period is from January 1995 to May 2022.
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Figure 5: Impact of CSC risk on macroeconomic aggregates

This figure shows the impact of cross-sectoral crash risk (CSC) shocks on macroeconomic aggregates. We estimate
the monthly vector autoregressive model, including the CSC index, log employment, log industrial production,
Federal Funds Rate, log average hourly earnings, log consumer price index, and average hours. Panels (a) and
(b) display the responses of employment and industrial production to CSC shocks, respectively. The solid line
is the impulse response and shaded area indicates 95% confidence interval. The sample period is from January
1990 to May 2022.
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Table 1: Summary statistics of commodity futures

This table reports the summary statistics of front-month futures contracts across 31 commodities, including
annualized mean returns (Mean), standard deviations (S.D.), skewness (Skew), kurtosis (Kurt), maximum (Max),
minimum (Min), first-order autocorrelation coefficient (ρ(1)), volume (Vol, the average number of contracts traded
per month), open interest (OI, the average number of daily open interest per month), start month (Start), and
the number of valid trading months (Obs) of commodity futures contracts. The sample period is from January
1990 to May 2022.

Code Mean S.D. Skew Kurt Max Min ρ(1) Vol OI Start Obs

Panel A: Energies
Crude Oil Brent CO 0.06 0.34 -0.82 8.72 0.42 -0.63 0.24 86015 186027 199001 389
Crude Oil WTI CL 0.04 0.36 -0.65 9.32 0.48 -0.68 0.21 109344 133727 199001 389
Gasoline QS 0.05 0.33 -0.34 4.80 0.34 -0.40 0.22 44682 97013 199001 389
Gasoline Unleaded XB 0.05 0.41 0.29 4.81 0.42 -0.39 -0.05 16645 7535 199001 204
Gasoline Blendstock HU 0.04 0.40 -2.76 21.21 0.29 -0.90 0.17 43544 84571 200510 200
Heating Oil HO 0.04 0.32 -0.23 4.39 0.31 -0.38 0.18 25008 58201 199001 389
Natural Gas NG -0.16 0.46 0.06 3.62 0.42 -0.39 0.05 41261 89969 199004 386

Panel B: Metals
Copper HG 0.04 0.25 -0.54 7.69 0.29 -0.45 0.06 28170 68774 199001 389
Gold GC 0.02 0.15 -0.05 4.33 0.15 -0.20 -0.11 87425 174636 199001 389
Palladium PA 0.07 0.32 -0.29 5.23 0.39 -0.41 0.02 1869 12756 199001 389
Platinum PL 0.02 0.21 -0.90 7.20 0.23 -0.38 0.06 6119 29842 199001 389
Silver SI 0.01 0.28 -0.10 4.23 0.26 -0.33 -0.07 32783 77165 199001 389

Panel C: Softs
Butter V6 -0.01 0.26 0.18 5.60 0.33 -0.28 0.21 20 1027 200509 201
Coccoa CC -0.04 0.28 0.09 3.54 0.30 -0.29 -0.20 9400 61750 199001 389
Coffee KC -0.07 0.35 0.57 4.68 0.42 -0.37 -0.05 11505 66741 199001 389
Milk DA 0.02 0.28 0.30 6.25 0.40 -0.33 0.16 243 3535 199601 316
Orange Juice JO -0.05 0.32 0.34 4.97 0.45 -0.30 -0.10 1359 14616 199001 389
Lumber LB -0.02 0.37 0.11 5.29 0.43 -0.47 0.09 519 3079 199001 389
Sugar SB 0.00 0.29 -0.22 3.95 0.27 -0.35 0.14 33261 230391 199001 389

Panel D: Grains
Corn C -0.06 0.26 0.04 4.12 0.26 -0.26 0.06 90300 427940 199001 389
Cotton CT -0.03 0.26 -0.15 3.55 0.21 -0.26 -0.02 8640 59077 199001 389
Kansas Wheat KW -0.03 0.27 0.16 4.04 0.31 -0.27 -0.01 12508 71426 199001 389
Oats O -0.01 0.30 0.24 4.01 0.30 -0.31 0.05 758 6547 199001 388
Rough Rice RR -0.07 0.25 0.25 5.46 0.39 -0.26 -0.02 541 6033 199001 388
Soybean Meal SM 0.07 0.25 0.09 4.12 0.26 -0.25 0.01 23376 80525 199001 389
Soybean Oil BO 0.00 0.24 -0.13 4.86 0.24 -0.29 -0.04 26945 97075 199001 389
Soybean S 0.04 0.23 -0.33 4.19 0.19 -0.25 -0.01 58728 181173 199001 389
Wheat W -0.08 0.27 0.09 4.10 0.32 -0.28 -0.06 37973 150751 199001 389

Panel E: Livestocks
Feeder Cattle FC 0.01 0.15 -0.37 3.97 0.13 -0.17 -0.02 2411 12530 199001 389
Lean Hogs LH -0.07 0.27 -0.40 4.14 0.26 -0.30 -0.04 10140 54291 199001 389
Live Cattle LC 0.01 0.14 -0.54 6.03 0.15 -0.24 -0.05 14257 74091 199001 389

40



Table 2: Univariate portfolio sorts

This table reports the CSC beta and summary statistics of CSC beta-sorted commodity futures portfolio returns.
P1 (P5) are portfolios with the lowest (highest) CSC beta and L-H is the zero-cost spread portfolio. We summarize
monthly mean excess returns (Ret-Rf) for the next month (Panel A) and next quarter (Panel B), annualized
standard deviations (S.D.) and the Sharpe ratio (SR), skewness (Skew), and kurtosis (Kurt). Panel C reports
the same summary statistics for the post-financialization period. The Newey & West (1986) adjusted t-statistics
are reported in parentheses, and *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively. The sample period is from January 1995 to May 2022, and the post-financialization period is from
January 2004 to May 2022.

Panel A: Next-month returns
P1 P2 P3 P4 P5 L-H

βCSC -0.400 -0.150 0.000 0.164 0.440 -0.840***
(-18.32)

Ret-Rf 0.531 0.060 0.075 -0.106 -0.507 1.039***
(1.55) (0.18) (0.23) (-0.37) (-1.64) (3.27)

S.D. 0.189 0.172 0.163 0.166 0.178 0.206
SR 0.338 0.042 0.055 -0.076 -0.342 0.604
Skew -0.243 -0.485 -0.507 -0.180 -0.346 -0.026
Kurt 5.797 4.523 6.378 4.544 4.690 3.844

Panel B: Next-quarter returns
P1 P2 P3 P4 P5 L-H

Ret-Rf 1.226 0.864 -0.140 -0.333 -1.342 2.568***
(1.24) (0.89) (-0.15) (-0.42) (-1.52) (2.64)

S.D. 0.348 0.325 0.294 0.293 0.316 0.361
SR 0.422 0.319 -0.057 -0.136 -0.510 0.854
Skew -0.343 -0.362 -0.351 -0.570 0.037 0.384
Kurt 7.270 5.098 3.993 4.877 4.830 4.527

Panel C: Next-month returns post financialization
P1 P2 P3 P4 P5 L-H

βCSC -0.407 -0.144 0.012 0.187 0.455 -0.862***
(-13.19)

Ret-Rf 0.509 0.004 0.236 -0.044 -0.514 1.023**
(1.07) (0.01) (0.57) (-0.13) (-1.25) (2.42)

S.D. 0.213 0.185 0.177 0.173 0.189 0.222
SR 0.288 0.003 0.160 -0.031 -0.326 0.553
Skew -0.255 -0.624 -0.627 -0.233 -0.444 -0.003
Kurt 5.096 4.621 6.396 5.027 4.927 3.817
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Table 3: Average commodity characteristics

This table reports the time-series averages of slope estimates for monthly cross-sectional regressions of the CSC
beta (βCSC) on a set of commodity-level characteristics, including the basis, momentum (MOM), basis-momentum
(BMom), relative basis (RB), hedging pressure (HP), liquidity (LIQ), volatility (VOL), skewness (Skew), value,
and open interest (OI). The Newey & West (1986) adjusted t-statistics are reported in parentheses, and *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period is from
January 1995 to May 2022.

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Basis 0.061
(1.45)

MOM -1.192**
(-2.41)

BMom -1.514
(-0.66)

RB -0.020
(-0.99)

HP -0.035
(-0.60)

LIQ 0.023*
(1.93)

VOL 0.002
(0.55)

Skew 0.038
(1.11)

Value 0.045
(0.43)

OI 0.016
(0.92)

Intercept -0.002 0.009 0.002 0.012 0.011 0.005 0.010 0.013 -0.050 0.016*
(-0.23) (0.86) (0.17) (1.26) (0.71) (0.57) (1.10) (1.33) (-0.47) (1.90)
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Table 4: Fama-MacBeth regression results

This table summarizes commodity-level Fama & MacBeth (1973) regression results. We run cross-sectional regressions of monthly excess commodity returns (in percentage) in
month t+ 1 on the CSC beta (βCSC) and a set of lagged control variables and report the time-series averages of slope coefficients obtained from the cross-sectional regressions.
The control variables include the basis, momentum (MOM), basis-momentum (BMom), relative basis (RB), hedging pressure (HP), liquidity (LIQ), volatility (VOL), skewness
(Skew), value, and open interest (OI). The Newey & West (1986) adjusted t-statistics are reported in parentheses. R2 (%) is the average cross-sectional R2. The sample
period is from January 1995 to May 2022.

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Intercept -0.115 -0.018 -0.083 0.054 0.141 -0.028 0.009 -0.028 0.001 -1.394 -0.596
(-0.49) (-0.08) (-0.40) (0.24) (0.62) (-0.11) (0.04) (-0.11) (0.00) (-1.09) (-0.42)

βCSC -0.980*** -0.971*** -0.882*** -0.862*** -0.684** -0.716** -0.752** -0.837*** -0.644** -0.646** -0.737**
(-3.05) (-2.93) (-2.97) (-2.98) (-2.37) (-2.50) (-2.48) (-2.71) (-2.14) (-2.22) (-2.29)

Basis -0.598 -0.778 -0.413 -2.465** -1.981* -1.918* -1.283 -1.285 -1.592 -1.719
(-1.26) (-1.43) (-0.70) (-2.54) (-1.93) (-1.85) (-1.17) (-1.18) (-1.55) (-1.60)

MOM 14.100** 12.171** 11.997** 7.928 6.857 7.037 9.085 10.937 8.469
(2.57) (2.23) (2.26) (1.35) (1.17) (1.13) (1.63) (1.61) (1.08)

BMom 32.520 11.983 20.561 19.964 25.657 17.551 24.325 27.452
(1.35) (0.51) (1.01) (0.94) (1.23) (0.84) (1.12) (0.99)

RB 2.380*** 2.145*** 2.125*** 1.624** 1.799** 2.118** 1.741**
(3.36) (2.76) (2.76) (2.26) (2.47) (2.65) (2.01)

HP 1.001* 1.009* 1.134* 0.627 0.699 0.897
(1.83) (1.80) (1.85) (1.05) (1.17) (1.46)

LIQ -0.002 -0.003 -0.002 -0.002 -0.002
(-1.40) (-1.61) (-1.35) (-1.40) (-1.23)

VOL -0.040 -0.049 -0.044 -0.036
(-1.04) (-1.23) (-1.22) (-0.92)

Skew -1.028*** -0.888*** -0.804**
(-3.27) (-2.66) (-1.96)

Value 1.383 0.522
(1.15) (0.39)

OI 0.009**
(2.00)

R2 (%) 2.43 4.56 9.84 12.11 14.61 14.27 13.12 12.94 15.54 19.16 21.17
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Table 5: Summary statistics for commodity factors

This table reports the summary statistics of commodity risk factors. To construct these factors, we sort all
commodity futures contracts into quintile portfolios based on different pricing signals at the month end, and
take long (short) positions in the quintile portfolios predicted to appreciate (depreciate) in the following month.
All portfolios are equally-weighted and re-balanced monthly with updated pricing signals. AVG is the long-
only equally-weighted cross-sectional average of all available commodity contracts. We also the term structure
(Basis), momentum (MOM), basis-momentum (BMom), relative basis (RB), hedging pressure (HP), liquidity
(LIQ), volatility (VOL), skewness (Skew), value, and open interest (OI). For each factor, we report annualized
mean returns (Mean), annualized standard deviations (S.D.) and Sharpe ratio (SR), skewness (Skew), kurtosis
(Kurt), minimum (Min), 25th percentile (Q25), median (Med), 75th percentile (Q75), and maximum (Max) in
Panel A, and t-stat is the Newey & West (1986) adjusted t-statistics. Panel B reports the Pearson (below the
diagonal) and Spearman (above the diagonal) correlations. The sample period is from January 1990 to May 2022.

Panel A: Summary statistics for commodity factors
Mean t-stat SD SR Skew Kurt Min Q25 Median Q75 Max

AVG 0.03 1.10 0.12 0.23 -0.73 6.85 -0.20 -0.02 0.00 0.02 0.12
Basis 0.06 2.12 0.16 0.39 0.11 3.41 -0.14 -0.02 0.01 0.04 0.20
MOM 0.09 2.03 0.25 0.36 0.04 3.96 -0.23 -0.04 0.01 0.05 0.31
BMom 0.07 1.83 0.20 0.34 0.01 4.64 -0.26 -0.03 0.01 0.04 0.23
RB 0.07 2.68 0.16 0.42 0.07 3.59 -0.14 -0.02 0.00 0.03 0.16
HP 0.07 1.77 0.18 0.37 0.03 3.26 -0.16 -0.03 0.00 0.04 0.15
LIQ 0.05 1.90 0.16 0.33 0.05 3.68 -0.14 -0.02 0.00 0.03 0.21
VOL -0.01 -0.26 0.18 -0.04 -0.03 4.39 -0.20 -0.03 0.00 0.03 0.18
Skew 0.09 2.61 0.20 0.46 -0.20 4.00 -0.21 -0.02 0.01 0.04 0.20
Value -0.01 -0.39 0.21 -0.07 0.00 3.39 -0.21 -0.04 0.00 0.04 0.18
OI 0.03 0.76 0.20 0.15 0.08 5.67 -0.27 -0.03 0.00 0.03 0.21

Panel B: Correlation
βCSC AVG Basis MOM BMom RB HP LIQ VOL Skew Value OI

βCSC 0.04 0.00 0.03 -0.07 0.11 0.07 0.08 0.01 0.09 0.05 -0.02
AVG 0.10 0.04 -0.01 -0.01 -0.07 0.16 -0.27 0.16 0.05 -0.19 0.00
Basis 0.05 0.09 -0.08 0.08 -0.30 0.14 -0.11 -0.07 0.01 0.03 -0.02
MOM 0.07 -0.02 -0.08 0.25 0.09 0.19 0.00 0.18 0.10 -0.37 -0.15
BMom -0.05 -0.02 0.03 0.35 0.10 0.04 0.03 0.07 0.15 -0.04 0.09
RB 0.06 -0.06 -0.32 0.09 0.08 0.04 0.37 0.12 0.12 -0.05 -0.02
HP 0.04 0.18 0.14 0.17 0.05 0.09 -0.07 0.06 0.14 -0.15 0.04
LIQ 0.05 -0.26 -0.11 -0.06 -0.02 0.37 -0.08 -0.04 -0.04 0.13 -0.01
VOL 0.05 0.18 -0.14 0.20 0.12 0.09 0.10 -0.11 0.03 -0.26 -0.03
Skew 0.14 0.11 0.03 0.08 0.11 0.13 0.19 0.01 0.15 -0.15 0.00
Value 0.05 -0.21 0.05 -0.42 -0.07 -0.05 -0.15 0.17 -0.29 -0.17 -0.01
OI -0.09 0.01 -0.07 -0.13 0.10 0.02 0.08 0.02 0.04 0.03 -0.02
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Table 6: Time-series spanning tests

This table reports risk-adjusted returns and factor loadings by regressing CSC beta factor returns on a set of
commodity asset pricing models (Panel A) and equity risk factors (Panel B). The Newey & West (1986) adjusted
t-statistics are reported in parentheses, and *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively. The sample period is from January 1995 to May 2022.

Panel A: Commodity asset pricing models
Model (1) (2) (3) (4) (5) (6)

Intercept 0.010*** 0.010*** 0.009*** 0.009*** 0.008*** 0.008**
(2.98) (3.26) (3.05) (3.04) (2.72) (2.33)

AVG 0.155 0.160 0.157 0.157 0.157 0.201*
(1.44) (1.42) (1.48) (1.35) (1.50) (1.86)

Basis 0.056 0.063 0.063 0.104 0.091
(0.65) (0.73) (0.69) (1.28) (1.07)

MOM 0.061 0.061 0.082 0.128
(0.77) (0.77) (1.08) (1.53)

BMom -0.044 -0.089 -0.108
(-0.58) (-1.24) (-1.52)

RB 0.117 0.070
(1.53) (0.95)

HP -0.001 -0.023
(-0.01) (-0.17)

LIQ 0.069
(0.77)

VOL 0.058
(0.65)

Skew 0.140*
(1.82)

Value 0.161
(1.59)

OI -0.060
(-1.06)

Adj R2 0.007 0.007 0.009 0.006 0.016 0.041
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Panel B: Equity risk factors
Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Intercept 0.010*** 0.010*** 0.011*** 0.011*** 0.010*** 0.010*** 0.010*** 0.012*** 0.012*** 0.012*** 0.010*** 0.011*** 0.013***
(2.95) (3.15) (3.18) (3.49) (3.11) (3.26) (3.08) (3.60) (3.52) (3.45) (2.96) (3.18) (3.44)

MKT-Rf 0.058 0.020
(0.80) (0.13)

SMB 0.037 -0.168
(0.32) (-1.02)

HML -0.066 -0.133
(-0.47) (-0.64)

RMW -0.267*** 0.094
(-2.88) (0.38)

CMA 0.089 0.043
(0.48) (0.10)

JT -0.021 0.133
(-0.28) (1.64)

IA 0.110 0.338
(0.52) (0.77)

ROE -0.296*** -0.424**
(-2.86) (-2.03)

EG -0.267* -0.173
(-1.92) (-0.77)

BAB -0.187* -0.133
(-1.95) (-1.16)

HKM 0.022 -0.015
(0.41) (-0.14)

PS -0.048 -0.043
(-0.52) (-0.49)

Adj R2 0.192 0.039 0.139 1.559 0.103 0.032 0.176 2.166 1.146 1.540 0.061 0.094 1.387
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Table 7: Cross-sectional asset pricing results: Second-stage Fama–MacBeth regressions

This table reports results of the second-stage Fama & MacBeth (1973) regressions. The linear factor models include seven risk factors: cross-sectoral crash risk (CSC) beta,
basis (Basis), momentum (MOM), basis-momentum (BMom), relative basis (RB), hedging pressure (HP), and skewness (Skew). We consider 35 portfolios as test assets: 5
basis, 5 momentum, 5 basis-momentum, 5 CSC beta, 5 relative basis, 5 hedging pressure, and 5 skewness portfolios and report the estimated risk premium, root mean square
error (RMSE), and cross-sectional R2. The t-statistics are based on both Newey & West (1986) in parentheses and Shanken (1992) correction in square brackets. The sample
period is from January 1995 to May 2022.

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

γ0 -0.003 -0.002 -0.002 -0.003 -0.002 -0.002 -0.003 -0.002 -0.002 -0.002 -0.003 -0.003 -0.003 -0.002
(-1.01) (-0.67) (-0.96) (-1.10) (-0.97) (-0.93) (-1.10) (-0.96) (-0.87) (-0.72) (-1.15) (-1.03) (-1.10) (-0.89)
[-1.40] [-0.92] [-1.04] [-1.20] [-1.32] [-1.00] [-1.19] [-1.03] [-0.91] [-0.75] [-1.19] [-1.06] [-1.15] [-0.93]

λCSC-β 0.013 0.013 0.013 0.013 0.012 0.012 0.011 0.011
(3.54) (3.52) (3.55) (3.52) (3.34) (3.31) (3.11) (3.18)
[3.42] [3.72] [3.41] [3.72] [3.51] [3.48] [3.28] [3.35]

λAVG 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.000
(0.44) (0.74) (0.40) (0.74) (0.46) (0.31) (0.03) (0.71) (0.49) (0.63) (0.27)
[0.20] [0.33] [0.18] [0.33] [0.21] [0.14] [0.01] [0.32] [0.22] [0.29] [0.13]

λBasis 0.005 0.005 0.004 0.004 0.005 0.005 0.005 0.005
(1.66) (1.64) (1.43) (1.40) (1.82) (1.72) (1.82) (1.61)
[1.70] [1.67] [1.46] [1.43] [1.89] [1.79] [1.89] [1.67]

λMOM 0.011 0.010 0.010 0.009 0.009 0.009 0.009 0.008
(2.59) (2.46) (2.36) (2.23) (2.39) (2.23) (2.36) (2.12)
[2.64] [2.51] [2.42] [2.28] [2.35] [2.18] [2.34] [2.11]

λBMom 0.008 0.008 0.008 0.008 0.004 0.005 0.004 0.005
(2.11) (2.11) (2.09) (2.09) (1.19) (1.44) (1.18) (1.43)
[2.26] [2.27] [2.24] [2.23] [1.25] [1.52] [1.25] [1.52]

λRB 0.006 0.005 0.006 0.005
(2.38) (2.17) (2.34) (2.05)
[2.12] [1.92] [2.12] [1.84]

λHP 0.015 0.015 0.006 0.009
(2.74) (2.77) (0.96) (2.75)
[2.34] [2.34] [0.86] [2.57]

λSkew 0.010 0.009 0.010 0.009
(3.08) (2.84) (3.04) (2.75)
[2.90] [2.63] [2.88] [2.57]

RMSE 0.12 0.15 0.12 0.15 0.09 0.09 0.12 0.08 0.11 0.07 0.08 0.05 0.08 0.05
R2 0.29 0.13 0.27 0.12 0.45 0.43 0.24 0.47 0.31 0.55 0.47 0.62 0.46 0.62
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Table 8: Cross-sectional asset pricing results: GMM estimation

This table reports GMM estimation results. The linear factor models include seven risk factors: cross-sectoral crash risk (CSC) beta, basis (Basis), momentum (MOM),
basis-momentum (BMom), relative basis (RB), hedging pressure (HP), and skewness (Skew) factors. We consider 35 portfolios as test assets: 5 basis, 5 momentum, 5
basis-momentum, 5 CSC beta, 5 relative basis, 5 hedging pressure, and 5 skewness portfolios and report factor loading b, estimated risk premium λ, and GMM-based
heteroskedasticity and autocorrelation-consistent (HAC) standard errors in parentheses. We also summarize the HJ distance of Hansen & Jagannathan (1997) and the
corresponding p-value for the null hypothesis H0 : HJ distance = 0. The λ estimates are multiplied by 100 for ease of readability. The sample period is from January 1995 to
May 2022.

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

bCSC-β 3.525*** 3.567*** 3.651*** 3.685*** 3.096*** 3.124*** 2.550** 2.711**
(1.11) (1.05) (1.13) (1.05) (1.06) (1.12) (1.07) (1.06)

λCSC-β 1.248*** 1.259*** 1.252*** 1.260*** 1.179*** 1.168*** 1.091*** 1.109***
(0.37) (0.34) (0.37) (0.34) (0.34) (0.34) (0.33) (0.33)

bAVG -0.166 0.766 -0.133 0.520 -0.226 -1.028 -1.814 0.184 -0.305 -0.007 -0.986
(2.19) (2.18) (2.24) (2.28) (2.30) (2.34) (2.42) (2.42) (2.39) (2.48) (2.48)

λAVG 0.059 0.098 0.054 0.102 0.064 0.043 0.003 0.098 0.069 0.090 0.041
(0.32) (0.31) (0.32) (0.31) (0.32) (0.31) (0.32) (0.32) (0.32) (0.31) (0.32)

bBasis 2.311* 2.079* 1.246 0.988 3.314** 2.848** 3.124** 2.171
(1.24) (1.24) (1.32) (1.32) (1.41) (1.41) (1.47) (1.43)

λBasis 0.487* 0.477* 0.411 0.399 0.536* 0.505* 0.523* 0.459*
(0.28) (0.28) (0.28) (0.28) (0.28) (0.28) (0.28) (0.28)

bMOM 2.268*** 1.968** 1.385 1.063 1.678* 1.255 1.575 0.875
(0.85) (0.84) (0.92) (0.91) (0.94) (0.94) (1.00) (0.99)

λMOM 1.096*** 1.042** 1.001** 0.944** 0.952** 0.883** 0.943** 0.849**
(0.41) (0.42) (0.41) (0.42) (0.40) (0.40) (0.40) (0.40)

bBMom 2.316** 2.333** 2.474** 2.473** -0.084 0.577 -0.054 0.72
(1.07) (1.06) (1.05) (1.05) (1.07) (1.08) (1.09) (1.09)

λBMom 0.818** 0.820** 0.814** 0.813** 0.423 0.514 0.421 0.512
(0.36) (0.36) (0.36) (0.36) (0.34) (0.34) (0.34) (0.34)

bRB 3.204** 2.682* 3.063** 2.166
(1.42) (1.42) (1.46) (1.42)

λRB 0.595** 0.543** 0.588** 0.518*
(0.27) (0.27) (0.27) (0.27)

bHP 5.043** 5.154** 0.661 2.254
(2.34) (2.41) (2.56) (2.56)

λHP 1.468** 1.477** 0.582 0.880
(0.59) (0.61) (0.63) (0.62)

bSkew 2.259** 1.698 2.170* 1.357
(1.07) (1.08) (1.13) (1.13)

λSkew 0.977*** 0.884*** 0.971*** 0.857**
(0.34) (0.34) (0.34) (0.34)

R2 0.30 0.15 0.30 0.17 0.48 0.48 0.31 0.53 0.40 0.62 0.57 0.69 0.57 0.71
HJ distance 0.43 0.45 0.43 0.45 0.42 0.42 0.43 0.40 0.40 0.36 0.37 0.34 0.35 0.32
p-value 0.05 0.02 0.05 0.02 0.06 0.06 0.03 0.07 0.11 0.22 0.13 0.23 0.18 0.33
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Table 9: Cross-sectional asset pricing results: Alternative disaster and downside risk
factors

This table reports results of the second-stage Fama & MacBeth (1973) regresisons. We consider nine control
variables, one at a time, in addition to the CSC beta factor, average (AVG), basis, and momentum (MOM)
factors: the change in tail risk index (∆TR) of Kelly & Jiang (2014), change in global tail risk concern (∆GRIX)
of Gao et al. (2019), left jump variation (LJV) of Bollerslev et al. (2015), change in the VIX (∆VIX), change
in news-implied rare disaster index (∆NVIX) of Manela & Moreira (2017), downside risk factor of Lettau et al.
(2014), equity return volatility (RVol) of Ang, Hodrick, et al. (2006), equity return skewness (RSkew) of Bali et al.
(2016), and coskewness (CoSkew) of Harvey & Siddique (2000). We consider 35 portfolios as test assets: 5 basis,
5 momentum, 5 basis-momentum, 5 CSC beta, 5 relative basis, 5 hedging pressure, and 5 skewness portfolios
and report estimated risk premium, root mean square error (RMSE), and cross-sectional R2. The t-statistics are
based on both Newey & West (1986) in parentheses and Shanken (1992) correction in square brackets.

Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

γ0 -0.005 -0.003 -0.004 -0.003 -0.005 -0.002 -0.003 -0.002 -0.002
(-1.76) (-1.03) (-1.36) (-1.32) (-1.86) (-0.96) (-0.99) (-0.97) (-0.97)
[-1.69] [-1.08] [-1.39] [-1.33] [-1.88] [-1.03] [-1.05] [-1.03] [-1.05]

λCSC 0.010 0.012 0.011 0.011 0.011 0.012 0.012 0.012 0.012
(2.74) (2.53) (2.97) (3.24) (2.79) (3.35) (3.47) (3.39) (3.34)
[2.87] [2.90] [3.13] [3.37] [2.98] [3.52] [3.65] [3.54] [3.52]

λ∆TR 0.021
(2.77)
[2.47]

λ∆GRIX -0.066
(-0.92)
[-0.85]

λLJV 0.001
(1.41)
[1.53]

λ∆V IX -0.104
(-2.46)
[-2.05]

λ∆NV IX -1.599
(-1.99)
[-1.59]

λDR 0.002
(0.28)
[0.29]

λRV ol 0.007
(0.57)
[0.53]

λRSkew 0.000
(-0.11)
[-0.11]

λCoSkew 0.001
(0.14)
[0.13]

Control Y Y Y Y Y Y Y Y Y
RMSE 0.12 0.15 0.09 0.07 0.10 0.08 0.08 0.08 0.08
R2 0.29 0.43 0.51 0.54 0.50 0.45 0.46 0.45 0.45
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Table 10: Robustness checks

In Panel A, we report the turnover of long-short CSC beta portfolios and take into account of transaction cost
(TC) by subtracting 8.6 bps from the gross return. We also calculate the break-even proportional transaction
cost (in bps) which leads to zero net returns. Panel B summarizes commodity futures portfolio returns with an
alternative pricing model, i.e., Eq.(20), to obtain the CSC beta. In Panel C, we report portfolio returns based
on a longer estimation window for obtaining the CSC beta. In Panel C, we construct the CSC index with 30
US equity sectors and examine portfolio returns based on this alternative CSC index. We report the monthly
mean excess returns (Ret-Rf), annualized standard deviations (S.D.) and Sharpe ratio (SR), skewness (Skew),
and kurtosis (Kurt). Newey & West (1986) adjusted t-statistics are reported in parentheses, and *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period is from January
1995 to May 2022.

Panel A: Transaction costs
Turnover Gross return Net return Break-even TC (bps)

Mean (%) SR Mean (%) SR

CSC beta 0.299 1.039*** 0.604 1.013*** 0.589 508
(3.27) (3.06)

Panel B: Alternative model specification
P1 P2 P3 P4 P5 P1-P5

Ret-Rf 0.517 0.409 -0.228 -0.060 -0.582 1.099***
(1.37) (1.17) (-0.83) (-0.21) (-1.62) (2.86)

S.D. 0.212 0.170 0.164 0.155 0.183 0.220
SR 0.293 0.289 -0.167 -0.047 -0.381 0.598
Skew -0.814 -0.407 -0.026 0.076 -0.782 0.125
Kurt 8.302 5.016 3.780 3.349 6.503 4.203

Panel C: Longer estimation window
P1 P2 P3 P4 P5 P1-P5

Ret-Rf 0.412 0.088 -0.328 -0.091 -0.384 0.796**
(1.11) (0.22) (-0.90) (-0.29) (-1.30) (2.55)

S.D. 0.188 0.198 0.181 0.162 0.183 0.208
SR 0.264 0.053 -0.218 -0.068 -0.252 0.459
Skew -0.093 -1.388 -0.656 -0.190 0.096 -0.084
Kurt 5.257 9.476 6.027 3.998 3.480 3.687

Panel D: Alternative measure of the CSC index
P1 P2 P3 P4 P5 P1-P5

Ret-Rf 0.266 0.151 0.208 -0.114 -0.447 0.713**
(0.74) (0.44) (0.61) (-0.43) (-1.46) (2.14)

S.D. 0.188 0.174 0.164 0.160 0.174 0.198
SR 0.169 0.104 0.152 -0.086 -0.309 0.431
Skew -0.390 -0.752 -0.243 -0.472 -0.538 -0.192
Kurt 3.972 6.114 4.630 4.937 4.767 3.104
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Appendix A US sectors

We use 17 US equity sectors, including food (FD), banks, insurance companies, & other financials

(FN), mining & minerals (MM), oil & petroleum products (OL), chemicals (CM), consumer

durables (CD), drugs, soap, perfumes, & tobacco (CN), construction & construction materials

(CM), steel works (SW), fabricated products (FP), machinery & business equipment (ME),

automobiles (AT), utilities (UT), textiles, apparel & footwear (TX), transportation (TP), retail

stores (RS), and other (OT). The summary statistics for these sectors are reported in Table A.1.

Appendix B Commodity risk factors and other characteristics

We use portfolio sorting and systematic long-short strategies to construct a set of commodity risk

factors and characteristics. At the month end, we sort all commodities into five quintile portfolios

based on different pricing characteristics, and take long (short) positions in commodities quintile

portfolios predicted to appreciate (depreciate) in the following month. All portfolios are equally-

weighted and rebalanced monthly with updated pricing characteristics.

Average (AVG): Bakshi et al. (2019) find that a model without featuring an average factor

fails to explain the time-series variation in commodity futures returns. We therefore calculate the

average (AVG) factor as the long-only equally-weighted cross-sectional average of all available

commodity contracts at time t.

Term structure (Basis): The basis in commodity markets is defined as the price difference

between spot and different-maturity contracts. Following Fuertes et al. (2010) and Yang (2013),

we apply the roll-yield to measure the slope of the futures curve of commodity k at time t as

follows:

Basisk,t = log(P
(1)
k,t )− log(P

(2)
k,t ), (B.1)

where P (1)
k,t and P (2)

k,t represent the first-nearest and second-nearest contracts price of commodity

k at time t, respectively. The term structure (basis) strategy buys (sells) contracts with the

highest (lowest) roll-yield sorted quintile portfolios.
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Momentum (MOM): The momentum effect emerges from the relation between an asset’s

current returns and its recent performance history (Asness et al., 2013). Specifically, we use

the prior twelve months as the formation period for each commodity futures to construct the

momentum factor as follows:

MOMk,t = (
1

12
)

11∑
j=0

rk,t−j , (B.2)

where rk,t−j represents the first-nearest contract returns of commodity k in month t− j. Based

on this MOMk,t signal, we first sort commodities into quintile portfolios at the end of month t.

Next, we buy (sell) portfolios containing past winners (losers) and hold this long-short portfolio

for one month. We also follow Bakshi et al. (2019) to use cumulative futures returns in past

twelve months and construct the characteristic as follows:

MOMCum
k,t =

11∏
j=0

(1 + rk,t−j)− 1. (B.3)

Empirical results from using alternative momentum formation procedures are qualitatively sim-

ilar.

Basis-Momentum (BMom): To capture the slope and curvature of the futures term

structure, Boons & Prado (2019) find that the basis-momentum as a new return predictor out-

performs other characteristics in predicting commodity futures returns. The economic rationale

of basis-momentum is based on the impaired market-clearing ability of speculators and financial

intermediaries. Combining the basis and momentum factors, the basis-momentum (Basis-Mom)

is defined as the difference between momentum in first- and second-nearby futures contracts:

BMomk,t =
11∏
j=0

(1 + r
(1)
k,t−j)−

11∏
j=0

(1 + r
(2)
k,t−j), (B.4)

where r(1)k,t−j and r
(2)
k,t−j represent the first- and second-nearest contract returns of commodity

k in month t − j. The Basis-Mom factor is constructed by taking a long (short) position in

commodities with high (low) basis-momentum characteristics.

Relative basis (RB): Gu et al. (2023) propose a better measure of convenience yield im-
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plied by the Theory of Storage, the relative basis (RB). They find that the RB dominates the

traditional basis in predicting future commodity returns and better reflects temporary fluctu-

ations in commodity inventories. Moreover, the RB is a priced characteristic in commodity

futures markets. The RB is calculated as the difference between a traditional short-term basis

and a similarly defined long-term basis:

RBk,t =
log(P

(1)
k,t )− log(P

(2)
k,t )

T2 − T1
−

log(P
(2)
k,t )− log(P

(3)
k,t )

T3 − T2
, (B.5)

where P (1)
k,t , P

(2)
k,t and P

(3)
k,t are futures prices for the first-, second- and third-nearest futures

contract of commodity k with expiration dates T1, T2, and T3, respectively, at the end of month

t. The RB factor is constructed by taking a long (short) position in commodities with high (low)

relative basis characteristics.

Hedging pressure (HP): Following Kang et al. (2020), we construct the hedging pressure

(HP) variable to characterize the trading behaviour of market participants in commodity futures

markets. In particular, we compute HPk,w for commodity k in week w as follows:

HPk,w =
CSk,w − CLk,w

OI
, (B.6)

where CSk,w and CLk,w are the number of contracts that commercial traders take short positions

and the number of contracts that they take long positions, respectively, OI is the commodity’s

most recent open interest, that is, the total number of contracts outstanding for commodity k in

week w. Since the COT report provided by the CFTC is available at the weekly frequency, we

use the HP calculated for the week at the end of each month as the monthly HP measure. We

form the HP factor by taking a long (short) position in commodities with high (low) hedging

pressure.

Liquidity: Following Szymanowska et al. (2014) which apply the Amivest measure for
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liquidity of Amihud et al. (1997), we construct the liquidity sorting variable as follows:

Amivestk,t =
1

D

D∑
d=1

V OLk,d
|rk,d|

, (B.7)

where rk,d and V OLk,d denote the first-nearest contracts’ daily return and daily dollar volume of

commodity k at time d, respectively. D represents the number of days in the prior two-month. A

lower value of this measure indicates low liquidity and is associated with higher expected returns

as investors require compensation for holding assets with poor liquidity. Therefore, the liquidity

variable is constructed as the return difference between the commodity futures portfolios that

consist of commodities with the lowest and highest liquidity proxied by the Amivest measure.

Volatility: Following Szymanowska et al. (2014), we use the coefficient of variation (CV) to

measure the volatility as follows:

CVk,t =
σ2k,t
|µk,t|

, (B.8)

where σ2k,t represents the variance of the first-nearest contract’s daily return series of commodity

k at time t during the previous 36 months, and µk,t denotes the absolute value of corresponding

past 36-month mean daily return of commodity k at month t. Based on the CV forecasting

variable, we take long (short) positions in sorted quintile portfolios containing commodities with

the highest (lowest) volatilities.

Skewness: Following Fernandez-Perez et al. (2018), we construct the skewness sorting vari-

able as follows:

Skewk,t =
1
D

∑D
d=1(rk,d − µk,t)3

σ3k,t
, (B.9)

where rk,d represents the daily return of commodity k at time d, µi,t and σk,t denote the previous

12-month average daily return and the standard deviation of these past 12-month daily returns

of commodity k at month t, respectively. D stands for the number of days in the prior 12

months. The skewness strategy is conducted by buying (selling) quintile portfolios consisting of

the most negatively (positively) skewed commodities.

Value: Following Asness et al. (2013) and Fernandez-Perez et al. (2017), we measure the
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value effect as follow:

Valuek,t = log
1
D

∑D
d=1 Fk,d,1

Fk,t,1
, (B.10)

where Fk,t,1 denotes the price of first-nearest futures contract of commodity k at time t. We set

D as the number of days between 4.5 (54) and 5.5 (66) years (months) ago. The numerator is the

average daily futures price of commodity k from 54 to 66 months ago. Therefore, a higher value

of this signal means that the long-term value of this asset is higher than the contemporaneous

price, indicating an upward trend of returns in the subsequent period. The performance of

this value strategy is computed by the return gap between the quintile portfolios consisting of

commodities with the highest (lowest) Valuek,t.

Open interest: Motivated by Hong & Yogo (2012) and Szymanowska et al. (2014), we

construct the open interest (OI) factor by sorting commodities into quintile portfolios based on

the aggregate open interest along the entire term structure and then conducting the long-short

portfolio strategy. We define the open interest signal as:

∆OIk,t = OIk,t −OIk,t−1, (B.11)

where OIk,t denotes the aggregate open interests of all available contracts for commodity k at

the end of month t. This signal therefore measures the monthly changes of OI over the futures

curve of all available commodities. We implement the open interest strategy by buying (selling)

quintile portfolios consisting of the highest (lowest) changes of OI commodities.

Appendix C Predicting stock market returns

To examine the predictability of cross-sectoral crash risk for future stock market returns, we run

the following predictive regression:

Rt→t+h = α+ β · CSCt + εt→t+h, (C.1)
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whereRt→t+h is the average market excess returns for the period from t to t+h, h = 1, 3, 6, 9, 12, 24

months. We calculate the in-sample R2 and bootstrapped p values for the Hodrick (1992) t-

statistics for slope estimates β.

To evaluate the out-of-sample (OOS) predictive ability, we compute the OOS R2 of Campbell

& Thompson (2008) and the mean squared forecasting error (MSFE)-adjusted statistic of Clark

& West (2007):

R2
OOS = 1−

∑T
t=1

(
Rt − R̂t

)2
∑T

t=1

(
Rt − R̄t

)2 , (C.2)

where
∑T

t=1

(
Rt − R̂t

)2
is the MSFE of the forecasting model (C.1) and

∑T
t=1

(
Rt − R̄t

)2 is the

MSFE of the benchmark model. Consistent with Campbell & Thompson (2008) and Welch &

Goyal (2008), we start with an initialization period of 20 years to generate the first OOS return

forecast. We implement a 20-year rolling window and repeat this forecasting exercise until the

end of the sample period to estimate R̄t (Faias & Zambrano, 2022; Welch & Goyal, 2008). A

positive value of R2
OOS indicates that Model (C.1) forecasts stock market returns with greater

accuracy than the benchmark model does in terms of the MSFE, and vice versa. We collect

monthly US value-weighted total market return index and three-month Treasury bill rates from

the Bloomberg.

Table C.1 summarizes in-sample estimation and out-of-sample forecasting results. In Panel

A, we observe that estimates for slope coefficients are all positive and significant from 1- to 24-

month ahead horizons. The economic magnitude of the slope coefficients is sizable ranging from

0.28% to 0.45%. More specifically, since the CSC measure is standardized to have zero mean

and unit variance, one standard deviation increase in the CSC risk is associated with a 0.45%

increase in one-month ahead US stock market returns. The in-sample regression R2s are also

economically significant ranging from 1.10% to 7.92%. In Panel B, the CSC risk significantly

predicts stock market returns out of sample, in line with the evidence in Panel A. In particular,

the out-of-sample R2 based on the MSFE-adjusted statistics is economically large at 2.06%
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and statistically significant at the 5% level. Our results show that the CSC risk possesses a

strong ability in predicting average stock market returns and this is consistent with theoretical

predictions of rare disaster models (Faias & Zambrano, 2022).
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Table A.1: US equity sector

This table reports the summary statistics of 17 US equity sectors. These include food (FD), banks, insurance
companies, & other financials (FN), mining & minerals (MM), oil & petroleum products (OL), chemicals (CM),
consumer durables (CD), drugs, soap, perfumes, & tobacco (CN), construction & construction materials (CM),
steel works (SW), fabricated products (FP), machinery & business equipment (ME), automobiles (AT), utilities
(UT), textiles, apparel & footwear (TX), transportation (TP), retail stores (RS), and other (OT). We report
annualized mean returns (Mean) and standard deviations (SD), skewness (Skew), kurtosis (Kurt), maximum
(Max), minimum (Min), first-order autocorrelation coefficient (ρ(1)). The sample period starts from 1989 to
2022.

Sector Mean SD Skew Kurt Max Min ρ(1)

FD 0.12 0.16 -0.09 11.99 0.10 -0.10 -0.05
FN 0.12 0.30 -0.06 10.50 0.18 -0.16 0.00
MM 0.13 0.26 -0.10 16.46 0.19 -0.20 -0.05
OL 0.12 0.23 -0.11 10.35 0.14 -0.14 0.02
CM 0.08 0.21 -0.34 9.77 0.11 -0.14 0.02
CD 0.12 0.23 -0.28 10.82 0.14 -0.12 -0.02
CN 0.13 0.17 -0.07 9.79 0.11 -0.08 -0.02
CM 0.14 0.23 -0.33 14.16 0.14 -0.19 0.01
SW 0.11 0.31 -0.12 10.50 0.20 -0.16 0.01
FP 0.12 0.20 -0.20 10.64 0.13 -0.12 -0.01
ME 0.14 0.26 0.20 9.62 0.16 -0.13 -0.02
AT 0.13 0.26 -0.11 9.09 0.15 -0.14 0.00
UT 0.12 0.20 -0.39 12.55 0.12 -0.13 0.00
TX 0.11 0.17 0.10 21.20 0.14 -0.12 -0.05
TP 0.13 0.19 -0.06 8.45 0.11 -0.09 -0.01
RS 0.13 0.24 0.07 17.68 0.15 -0.15 -0.06
OT 0.11 0.19 -0.18 10.36 0.10 -0.12 -0.04
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Table C.1: Stock market return predictability of CSC risk

This table summarizes the in- (Panel A) and out-of-sample (Panel B) stock market return predictability results
for the CSC risk. Panel A reports the in-sample R2 and bootstrapped p values for the Hodrick (1992) t-statistics
for slope estimates β in percentage for the predictive regression: Rt→t+h = α+β ·CSCt+εt→t+h, where Rt→t+h is
the average market excess returns from mont t to t+h, h = 1, 3, 6, 9, 12, 24 months and CSCt is the standardized
CSC risk measure for month t with zero mean and unit variance. Panel B reports the OOS R2 of Campbell &
Thompson (2008) and the mean squared forecasting error (MSFE)-adjusted statistic of Clark & West (2007).
We also report Clark & West (2007)’s MSFE-adjusted statistics for the null hypothesis that the stock return
forecasts based on the benchmark model encompass the forecasts based on the competing model. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period is from January
1990 to May 2022.

Panel A: In-sample estimation
h (months) β(%) p-value R2(%)

1 0.445** 0.033 1.097
3 0.425** 0.033 2.968
6 0.392** 0.046 4.760
9 0.354* 0.054 5.610
12 0.343* 0.084 6.736
24 0.282* 0.089 7.924

Panel B: Out-of-sample forecasting
R2
OOS(%) MSFE-adjusted CW p-value

CSC 2.063** 1.738 0.041
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